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Abstract

We treat simulation and power optimization of nonlinear, steady and dynamical generators of mechanical energy, in particular radi-
ation engines. In dynamical cases, associated with downgrading of resources in time, real work is a cumulative effect obtained from a
nonlinear fluid, set of engines, and an infinite bath. Dynamical state equations describe resources upgrading or downgrading in terms
of temperature, work output and process controls. Recent formulae for converter’s efficiency and generated power serve to derive Ham-
ilton–Jacobi equations for the trajectory optimization. The relaxation curve of typical nonlinear system is non-exponential. Power extre-
mization algorithms in the form of Hamilton–Jacobi–Bellman equations (HJB equations) lead to work limits and generalized
availabilities. Optimal performance functions depend on end states and the problem Hamiltonian, h. As an example of limiting work
from radiation, a generalized exergy flux of radiation fluid is estimated in terms of finite rates quantified by Hamiltonian h.

In many systems governing HJB equations cannot be solved analytically. Then the use of discrete counterparts of these equations and
numerical methods is recommended. Algorithms of discrete dynamic programming (DP) are particularly effective as they lead directly to
work limits and generalized availabilities. Convergence of these algorithms to solutions of HJB equations is discussed. A Lagrange mul-
tiplier k helps to solve numerical algorithms of dynamic programming by eliminating the duration constraint. In analytical discrete
schemes, the Legendre transformation is a significant tool leading to the original work function.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

An important class of research on energy limits involves
nonlinear systems driven by fluids that are restricted in
their amount or flow, i.e. play role of resources. A resource
is a valuable substance used in a limited amount in a prac-
tical process. Value of the resource can be quantified ther-
modynamically by specifying its exergy, a maximum work
that can be delivered when the resource relaxes to the equi-
librium. Reversible relaxation of the resource is associated
with the classical exergy. When some dissipative phenom-
ena are allowed generalized exergies are found. They
include the resource availability and a minimum work lost
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijheatmasstransfer.2006.11.018

* Fax: +48 22 251440.
E-mail address: sieniutycz@ichip.pw.edu.pl
during its production. In the classical exergy only the first
property is essential.

To calculate an exergy, knowledge of a work integral is
required. For thermal problems its integrand is the product
of thermal efficiency and the differential of exchanged
energy. Various dissipation models lead to diverse
thermal efficiencies that deviate from the Carnot efficiency.
In fact, generalized exergies quantify somehow these
deviations.

Formally, an exergy follows from the principal function
of a variational problem for extremum work under suitable
boundary conditions. Other components are optimal tra-
jectory and optimal control. In thermal systems the trajec-
tory is characterized by temperature of the resource, T(t),
whereas a suitable control is Carnot temperature T0(t)
defined in our previous work [1,2]. Whenever T0(t) differs
from T(t) the resource relaxes to the environment with a
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Nomenclature

A1 generalized exergy density of resource (J m�3)
Aclass density of classical exergy (J m�3)
a temperature power exponent in kinetic equation

(–)
av total area of energy exchange per unit volume

(m�1)
cv specific heat of unit volume (J m�3 K�1)
c specific heats (J g�1 K�1, J m�3 K�1,

J mol�1 K�1)
Dn,eDn generalized profit and gauge profit at stage n
DP dynamic programming
f rate vector with components f1; . . . ; fk; . . . ; fs

f0; fi profit rate and process rates
G gauge function
_G resource flux (g s�1, mol s�1)
g1, g partial and overall conductance (J s�1 K�a)
H Hamiltonian function
h Hamiltonian density in entropy units

(J m�3 K�1)
l0 Lagrangian, intensity of generalized cost
p power output (J s�1)
R minimum performance function (J, or J mol�1)
S, Sr entropy and entropy produced (J K�1)
T variable temperature of resource fluid (K)
T1, T2 bulk temperatures of reservoirs 1 and 2 (K)
T10, T20 temperatures of circulating fluid (Fig. 3) (K)
T n temperature after stage n (K)
T e constant temperature of environment (K)
T 0 Carnot temperature control (K)
_T ¼ u rate of control of T in non-dimensional time (K)
t physical time (s)
u control vector

u and t temperature rate controls, dT/ds and dT/dt,
respectively (K, K s�1)

V maximum performance function (J, or J mol�1)
v velocity (ms�1)
W and _W work and power (J, J s�1)
w work per unit flux of resource (J/mol)
x state vector
~x enlarged state vector including time
zk adjoint variable for kth coordinate

Greek symbols

a0 overall heat transfer coefficient (J m�2 s�1 K�1)
b coefficient, frequency constant (s�1)
k Lagrange multiplier, time adjoint
g ¼ p=q1 first-law efficiency (–)
U factor of internal irreversibility (–)
h time interval (s, –)
n intensity index (–)
s non-dimensional time or number of heat trans-

fer units ðx=H TUÞ (–)

Subscripts

k kth state variable
m molar flow
1,2 first and second fluid
* modified cost or profit

Superscripts

e environment
i initial state
f final state
0 modified quantity
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finite rate and the system’s efficiency deviates from that of
Carnot. Only in the case when T0(t) = T(t) the efficiency is
Carnot, but this corresponds with an infinitely slow relax-
ation rate of the resource to the thermodynamic equilib-
rium with the environmental fluid.

The structure of this paper is as follows. Section 2 dis-
cusses various aspects of steady and dynamical optimiza-
tion of power yield. Quantitative analysis of processes
with resource’s downgrading (in the first reservoir) and
issues regarding generalization of the classical exergy for
finite rates are presented in Section 3. Sections 4–6 display
various Hamilton–Jacobi–Bellman (HJB) and Hamilton–
Jacobi equations for extremum power production (con-
sumption). Extensions, highlighting systems with complex
kinetics (e.g. radiation) and internal dissipation are treated
in Section 7. Analytical formulae for generalized exergies of
some nonlinear systems are discussed in Section 8. Next, in
view of severe difficulties in getting analytical solutions for
systems with nonlinear kinetics discretized (difference)
equations and numerical approaches are considered. Sec-
tion 9 displays difference equations obtained from discret-
ization of the continuous model of power production
from the black radiation and presents the dynamic pro-
gramming equation (DP equation) of the problem. Section
10 discusses convergence conditions of discrete DP schemes
to solutions of continuous HJB equations. Section 11 elu-
cidates the solving method by discrete approximations
and introduces a Lagrange multiplier as a time adjoint.
Section 12 shows the significance of the Legendre trans-
form in recovering original work functions. Section 13
describes numerical procedures using dynamic program-
ming, whereas Section 14 discusses dimensionality reduc-
tion in numerical DP algorithms. Section 15 presents
most essential conclusions.

The size limitation of the present paper does not allow
for inclusion of all suitable derivations to make this paper
self-contained, thus the reader may need to turn to some
previous works [1,2,4,5].
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2. Finite resources and power optimization in steady

processes

In a process of energy production two resting reservoirs
do interact through an energy generator (engine). The
power flow is steady only when two reservoirs are infinite.
When one, say, upper, reservoir is finite, its thermal poten-
tial must decrease in time, and a dynamical process takes
place. From the optimization viewpoint the dynamical pro-
cess is every one in which sequential changes of state do
occur, either in the chronological time or in (spatial)
holdup time. Dynamical processes evolving in chronologi-
cal time take place in non-stationary systems, those evolv-
ing in spatial time, in steady-state systems.

The majority of research on energy limits published to
date deals with (steady) systems with infinite reservoirs.
To this case refer steady-state analyses of the Chambadal–
Novikov–Curzon–Ahlborn engine (CNCA engine [6]),
where the energy exchange is described by Newtonian law
of cooling, or the Stefan–Boltzmann engine, a radiation sys-
tem with the energy exchange governed by the Stefan–
Boltzmann law [7]. As the result of their stationarity (caused
by the infiniteness of both reservoirs), controls maximizing
power are represented by a fixed point in the state space. In
fact, in the CNCA engine, the maximum power point may
be related to the optimum value of a free (unconstrained)
control variable which can be efficiency g or Carnot temper-
ature T0. In terms of the reservoirs temperatures T1 and T2

and the internal irreversibility factor U one finds optimal
T 0opt ¼ ðT 1UT 2Þ1=2 [4]. For the Stefan–Boltzmann engine
the optimal point cannot be determined analytically, yet,
this temperature can easily be found graphically from the
power diagram W ¼ f ðT 0Þ, Fig. 1.
Fig. 1. Maximum of power in a steady radiation system.
Moreover, method of Lagrange multipliers can success-
fully be applied [8]. As the elimination of these multipliers
from a set of resulting equations is quite easy, the problem
is broken down to the numerical solving of a nonlinear
equation for the optimal control T 0.

Finally, the so-called pseudo-Newtonian model [4,5,8],
which uses the state or temperature dependent heat
exchange coefficient a(T3), omits many analytical difficul-
ties associated with the use of Stefan–Boltzmann equation
in both steady and unsteady situations [4,5].
3. Dynamic optimization and generalized exergies

The prediction of dynamical energy yield requires the
evaluation of an extremal curve rather than an extremum
point. This is associated with application of variational
methods (to handle functional extrema) in place of static
optimization methods (to handle extrema of functions).
For example, the use of the pseudo-Newtonian model of
radiation [5], gives rise to an exponential curve describing
the radiation relaxation to the equilibrium. As the conse-
quence of the nonlinear properties of the relaxation
dynamics non-exponential are also other curves describing
the radiation relaxation, e.g. those following from exact
models using the Stefan–Boltzmann equation (symmetric
and hybrid, [4,5]).

Analytical difficulties associated with dynamical optimi-
zation of relaxing radiation are severe. Optimal (i.e. power-
maximizing) relaxation curve T(t) is associated with the
optimal control curve T0(t); they both are components of
the dynamic optimization solution to a continuous process
in which power is produced (consumed) in a sequence of
infinitesimal engines, Figs. 2 and 3. Two different works
are essential, the first associated with the resource down-
Fig. 2. Work consumed in heat-pump modes is larger than work
generated in engine modes. In a problem of maximum work delivery a
resource tends to the equilibrium with the thermal reservoir (state
downgrading via relaxation from T to T e, ‘‘engine mode”). In a problem
of minimum work supply a resource departs from the equilibrium with the
thermal reservoir (state upgrading from T e to T, ‘‘heat-pump mode”).



Fig. 3. Cascade scheme of flowing resource downgrading in a power
production process. The scheme is a tool for evaluation of a generalized
exergy of radiation fluid.
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grading during its relaxation to the equilibrium and the sec-
ond – with the reverse process of resource upgrading,
Fig. 2. During the approach to the equilibrium engine mode
of the system takes place in which work is released, during
the departure – heat-pump mode occurs in which work is
supplied. Work W delivered in the engine mode is positive
by assumption (‘‘engine convention”). A sequence of infin-
itesimal engines (CNCA or Stefan–Boltzmann type) serves
to determine a rate-dependent exergy extending the classi-
cal exergy for irreversible, finite-rate processes. As an infin-
itesimal rectangle in Fig. 2 for the heat-pump mode is
larger than that for the engine mode, the magnitude of
work consumed in energy pumping modes is larger than
that in energy generation modes. This effect is, in fact,
the manifestation of the second law of thermodynamics.

Before maximization of a work integral, process effi-
ciency g has to be obtained as a function of state T and a
control variable, i.e. energy flux q or rate dT/ds, to assure
the functional property (path dependence) of the work inte-
gral. The integration must be preceded by maximization of
power or work at flow w to assure an optimal path. The
optimal work is sought in the form of a potential function
that depends on the end states and duration. This function
is a finite-rate exergy when the final state of engine mode is
that of equilibrium with the environment. Another exergy
function is obtained for heat-pump mode, when the initial
state is close to that of equilibrium with the environment
and the resource is upgraded.

In the corresponding discrete problem, Fig. 3, formu-
lated for numerical purposes via discretization, one
searches for optimal temperature sequences {T n} and
{T 0n}. Each step is a work-producing (consuming) stage
with the energy exchange between two fluids and the ther-
mal machine through finite ‘‘conductances”. Each conduc-
tance is the product of an effective transfer coefficient and
the area. For the radiation (Stefan–Boltzmann) engine it
follows from the Stefan–Boltzmann law that the effective
transfer coefficient a1 of the ‘‘driving” (radiation) fluid is
necessarily temperature dependent, a1 ¼/ T 3

1. The second
or low-T fluid represents the usual environment, as in the
exergy theory. This fluid possesses its own boundary layer
as a dissipative component, and the corresponding
exchange coefficient is a2. In the physical space, the flow
direction of the resource fluid is along the horizontal coor-
dinate x, corresponding with engines located continuously
along x between both fluids.

Diverse optimization methods lead to optimal sequences
{T n} and {T 0n}. They include: direct search, dynamic pro-
gramming, discrete maximum principle, and combinations
of these methods. Minimum power supplied to the system
is described by function sequences RnðT n; tnÞ, whereas
maximum power produced by functions V nðT n; tnÞ ¼
�RnðT n; tnÞ. As the systems considered are autonomous,
the elimination of duration variable tn is possible, which
improves the accuracy of calculations. The elimination is
accomplished by the introduction of a Lagrange multiplier
and use of modified power cost functions, Sections 11 and
14.

In the numerical optimization of power (Sections 9–14),
one may assume either constant time integrals h ¼ Dt or
admit that these intervals vary with the stage number n.
In the second case time intervals hn are chosen optimally,
so as to optimize the total power form all stages. A freedom
in the choice of hn is associated with the constancy of a
Lagrange multiplier k. This Lagrange multiplier is the
adjoint variable of total time, tn ¼ Rhk.

Importantly, energy limits of dynamical processes are
inherently connected with the exergy functions, the classi-
cal exergy and its rate-dependent extensions. To obtain
the classical exergy from power equations it suffices to
assume that the thermal efficiency of the system is the Car-
not efficiency. This assumption eliminates the entropy pro-
duction and the thermodynamic Hamiltonian and leads to
work functions dependent only on classical thermodynamic
variables (independent of process duration or process
rates). For appropriate boundary conditions that assure
vanishing of the work potential at the equilibrium, the opti-
mal performance functions become identical with classical
exergies.

On the other hand, extended performance functions lead
to generalized exergies. The latter depend not only on clas-
sical thermodynamic variables but also on their rates.
These generalized exergies refer to state changes in a finite
time, and can be contrasted with the classical exergies of
quasi-static processes. The benefit obtained from general-
ized exergies is that they define stronger energy limits than
those predicted by classical exergies.

Kinetic approach to exergies (classical or generalized)
based on work functionals leads to several original results,
in particular it explains some unknown properties of exergy
of black-body radiation or solar radiation, and proves that
the efficiency of a reversible solar flux is equal to the Carnot
efficiency [5]. One can also show that the well-known Pete-
la’s equation for the radiation exergy is restricted to the
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exergy of enclosed radiation. Yet, this equation ceases to be
valid for the exergy transferred with the flux of electromag-
netic radiation. Summing up, the kinetic approach helps to
solve several basic problems in the literature of classical
exergy, and offers a correct generalization of exergy for
processes with finite rates.
4. Power functionals and some aspects of analytical HJB

theory

Total power obtained from an infinite sequence of infin-
itesimal engines is determined as the Lagrange functional
of the following structure

_W ½Ti;Tf � ¼
Z tf

ti

f0ðT ; T 0Þdt ¼ �
Z tf

ti

_GcðT ÞgðT ; T 0Þ _T dt;

ð1Þ

where f0 is power generation intensity, _G-resource flux,
c(T)-specific heat, g(T,T0)-efficiency in terms of state T

and control T 0, T – enlarged state vector comprising state
and time, t – time variable (residence time or holdup time)
for the resource contacting with heat transfer surface.
Sometimes one uses a non-dimensional time s, identical
with the so-called number of the heat transfer units. Note
that, for constant mass flow _G of a resource, one can extre-
mize power per unit mass flux, the quantity of work dimen-
sion. In this case Eq. (1) describes a problem of extremum
work. Integrand f0 is power generation function common
for both modes, yet the numerical results it generates for
each mode differ by sign. By the ‘‘engine convention” f0

is positive for engine mode and negative for heat-pump
mode. Yet f0 can always be replaced by power consump-
tion function l0 ¼ �f0. Formally, l0 plays the role of a
Lagrangian which is positive in energy consumption
modes.

When the resource flux is constant the following work
functional can be obtained from Eq. (1) for the thermal

exergy flux per unit flux of resource

wmaxdT=dt
¼ �

Z T f¼T e

T i¼T
cðT Þ 1� T e

T 0ðT ; dt=dT Þ

� �
dT : ð2Þ

Note that the independent variable in this equation is dif-
ferent than that in Eq. (1).

The function f0 in Eq. (1) contains thermal efficiency
function, g, described by a practical counterpart of the Car-
not formula. When T > T e, efficiency g decreases in the
engine mode above gc and increases in the heat-pump mode
below gc. At the limit of vanishing rates, dT =dt ¼ 0 and
T 0 ! T . Then work of each mode simplifies to the common
integral of the classical exergy. For the specific thermal

exergy

w max
dT =dt!0

¼ �
Z T f¼T e

T i¼T
cðT Þ 1� T e

T

� �
dT ¼ h� he � T eðs� seÞ:

ð3Þ
Therefore, with appropriate boundary conditions, Eq.
(1) leads to a generalization of thermal exergy for finite
time processes. An equivalent form of the work functional
has two additive components: the classical (potential or
path-independent) part and a non-potential part which
depends on the history of the process.

Nonlinearities can have both thermodynamic and
kinetic origins; the former refer, for example, to state
dependent heat capacity, c(T), the latter to nonlinear
energy exchange. Problems with linear kinetics (Newtonian
heat transfer) are important subclass of family of problems
considered. For example, in problems with linear kinetics,
power release per unit mass flow of the fluid (fluid’s specific
work at flow), w, is described by an equation

w½Ti;Tf � ¼ _W = _G ¼ �
Z T f

T i

cðT Þ 1� T e

T

� �
dT

� T e

Z tf

ti
cðT Þ ðT

0 � T Þ2

T 0T
ds; ð4Þ

where

s � x
H TU

¼ a0avF
_Gc

x ¼ a0avFv
_Gc

t ð5Þ

is non-dimensional time of the process. Eq. (5) assumes that
a resource fluid flows with velocity v through cross-section
F and contacts with the heat transfer exchange surface per
unit volume av [1]. Quantity s is identical with the so-called
number of the heat transfer units.

Solutions to work extremum problems can be obtained
by the variational calculus or maximum principle [8–11].
Yet these methods do not provide a direct information
about the optimal work function. This is assured by solving
the Hamilton–Jacobi–Bellman equation or a recurrence
equation of dynamic programming for ‘principal functions’
V or R (also called extremum work functions). We shall
prove soon that for the example described by Eq. (4)

oV
os
þmin

T 0

oV
oT
þ c 1� T e

T 0

� �� �
ðT 0 � T Þ

� �
¼ 0: ð6Þ

The extremum work function V ¼ max W depends on final
state of T and total duration, s. After evaluation of optimal
control and its substitution to Eq. (6) one obtains a nonlin-
ear equation

oV
os
� c

ffiffiffiffiffi
T e
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T ð1þ c�1oV =oT

p
Þ

n o2

¼ 0 ð7Þ

which is the Hamilton–Jacobi equation of the problem. Its
solution can be found by the integration of work intensity
along an optimal path, for limits T i and T f, as shown in
Section 6.

While the final part of this paper offers discrete algo-
rithms whose solutions converge to solutions of HJB equa-
tions, these continuous equations have their own analytical
theory. This theory is outlined here. Often HJB equations
are derived by continuous version of dynamic program-
ming, e.g. Refs. [9–11]. Here a simple and brief approach
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exploiting Caratheodory’s idea of potentiality of optimal
performance function [12] is presented. We also show the
role of a Hamiltonian function

H ¼ f0ðx; u; tÞ þ
Xs

i¼1

ðoR=oxiÞfiðx; u; tÞ ð8Þ

in HJB equations. This function contains state vector x,
control vector u, rates f0 and fi and partial derivatives
zi ¼ oR=oxi . The latter define the so-called adjoint vector
z. The scalar f0 is the growth rate of a generalized profit
(intensity of work yield in our case). Hamiltonian H is an
energy-like quantity, constant of an optimal path of an
autonomous system. In terms of H and z ¼ oR=ox a gen-
eral HJB equation is

oR
ot
þmax

uðtÞ
H

oR
ox
; x; u; t

� �
¼ 0: ð9Þ

Let us derive the above equation for the engine mode of an
energy process. A control problem of maximum delivery of
cumulative power is governed by the characteristic function

V ðT i; ti; T f ; tfÞ � max _W ½Ti;Tf �
T 0ðtÞ

¼ max
T 0ðtÞ

Z tf

ti

f0ðT ; T 0Þdt

 !
: ð10Þ

As it follows from the above definition of V

max
T 0ðtÞ

Z tf

ti
f0ðT ; T 0Þdt � V ðT i; ti; T f ; tfÞ

 !
¼ 0: ð11Þ

Here f0 ¼ �l0, is the profit generation rate, or, in our case,
intensity of power production. Differentiation of Eq. (11)
with respect to the upper limit of the integral, tf, yields

max
T 0ðtÞ

f f
0 ðT ; T 0Þ �

dV ðT i; ti; T f ; tfÞ
dtf

� �
¼ max

T 0ðtÞ
f f

0 ðT ; T 0Þ �
oV
otf
� oV

oT f
f fðT ; T 0Þ

� �
¼ 0: ð12Þ

All rates (f0 and f) and partial derivatives of V are evalu-
ated at the final state (the so-called ‘forward equation’).
In the second expression, total time derivative is expanded
in terms of rates. Observe that partial derivative of charac-
teristic function V with respect to time can be taken off this
equation and the superfluous index f can be omitted (vari-
able final states). Then, after replacing V by �R, a HJB
equation is obtained, consistent with Eq. (9)

oR
ot
þmax

T 0ðtÞ

oR
oT

f ðT ; T 0Þ � l0ðT ; T 0Þ
� �

¼ 0: ð13Þ

For resources relaxing with linear kinetics (Newtonian heat
exchange) Eq. (12) yields Eq. (6).

Despite of derivation simplicity, severe difficulties in
solving HJB equations call for numerical methods. These
methods apply suitable discrete models, for definite rates
f0 (or l0) and f. Convergence of the DP models to continu-
ous ones is discussed in Section 11, see also [3]. With dis-
crete models the theory can be restated and live with its
own life in the realm of difference equations, sums, recur-
rence relations, two-stage criteria, etc., often achieving a
form strongly dissimilar while still equivalent to the origi-
nal HJB theory [3].

5. HJB equations for complex power generation systems

Detailed derivations of nonlinear models describing
sequences of infinitesimal engines are known from previous
publications [1,2,4,5]. These models provide both power
intensity functions f0 (or Lagrangians l0 ¼ �f0) and
dynamical constraints, i.e. suitable differential equations.
Both f0 and differential constraints are used in the corre-
sponding HJB equations.

Here we shall display various Hamilton–Jacobi–Bell-
man equations for power systems described by nonlinear
kinetics.

Arbitrary nonlinear kinetics

For an arbitrary work generation function f0 and
nonlinear kinetics dT =dt ¼ f ðT ; T 0Þ a HJB equation in
terms of work generation function V, final state and final
time is

� oV
ot
þmax

T 0ðtÞ
f0ðT ; T 0Þ �

oV
oT

f ðT ; T 0Þ
� �

¼ 0: ð14Þ

Radiation engine approximated by the pseudo-Newtonian

model

A suitable example is a radiation engine whose power
integral is expressed as

_W ¼ �
Z tf

ti

_Gmcm 1� U0
T e

T 0

� �
tðT 0; T Þdt ð15Þ

with t ¼ aðT 3ÞðT 0 � T Þ. An alternative form uses Carnot
temperature T0 explicit in t [5]. Then

_W ¼�
Z T 0

T

_Gm chmðT Þ� cvmðT Þ
T e

T

� �
tdt

�
Z T 0

T
T e _Gm cvmðT Þ

vt2

T ðT þ vtÞþ ð1�UÞ t
T þ vt

� �� �
dt:

ð16Þ

This defines f0 in terms of t, with the entropy production
singled out in the second term. Optimal power function
of this problem, V ¼ max W , can be referred to each of
these integrals.

Stefan–Boltzmann engine

For the symmetric model of radiation conversion (both
reservoirs composed of radiation) a power integral has
the form

_W ¼
Z tf

ti

_GcðT Þ 1� UT e

T 0

� �
b

T a � T 0a

ðU0ðT 0=T eÞa�1 þ 1ÞT a�1
dt:

ð17Þ

The exponent a = 4 for radiation and a = 1 for a linear
resource. With the state equation [5]
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dT
dt
¼ �b

T a � T 0a

ðU0ðT 0=T eÞa�1 þ 1ÞT a�1
ð18Þ

applied in general Eq. (14) we obtain a HJB equation

�oV
ot
þmax

T 0 ðtÞ
_GcðT Þ 1�U

T e

T 0

� �
þoV

oT

� �
b

T a�T 0a

ðU0ðT 0=T 2Þa�1þ1ÞT a�1

( )
¼ 0:

ð19Þ

In an optimal case, dynamical equation (18) is the charac-
teristic equation for Eq. (19).

For the hybrid model of radiation conversion (lower res-
ervoir Newtonian, [5]) the power integral is

_W ¼�
Z tf

si

GcðT Þ 1� UT e

ðT aþb�1T a�1uÞ1=aþUb�1T a�1ug1=g2

 !
udt

ð20Þ

and the corresponding Hamilton–Jacobi–Bellman equation
is

�oV
otf
þmaxT 0 ðtÞ � _GcðT Þ 1� UT e

ðT aþb�1T a�1uÞ1=aþUb�1T a�1ug1=g2

 !
þ oV

oT f

 !
u

( )
¼ 0:

ð21Þ
6. Analytical solutions in systems with linear kinetics

In all HJB equations extremized expressions are
Pontryagin’s-type hamiltonians, referred to non-extremal
processes rather than extremum hamiltonians resembling
energy of classical mechanics. However, in the HJB formal-
ism, as opposed to the canonical Pontryagin’s formalism,
hamiltonians are defined in the enlarged state space ðT ; sÞ
½or ðT ; tÞ� rather than in the phase space ðT ; z; sÞ. In fact,s
is an extra state variable in the space ðT ; sÞ.

For example, Pontryagin’s Hamiltonian of linear system
(Newtonian energy flow) is

H ¼ z� c 1� T e

T 0

� �� �
ðT 0 � T Þ

¼ z� c 1� T e

T þ u

� �� �
u: ð22Þ

From Eqs. (12) and (22) z ¼ oR=oT , i.e. the temperature
adjoint is the gradient of R, or the negative gradient of
V. An optimal driving temperature T0 is chosen to maxi-
mize hamiltonian (22) or HJB expression (12) with respect
to T0 at each point of the process path. This maximization
leads to two equations. The first expresses the optimal con-
trol T0 through T and z or oR/oT

oR
oT
� ol0ðT ; T 0Þ

oT 0
¼ oR

oT
� c 1� T eT

T 02

� �
¼ 0; ð23Þ

whereas the second is the HJB expression without maxi-
mizing operation

oR
ot
þ oR

oT
ðT 0 � T Þ � c 1� T 2

T 0

� �
ðT 0 � T Þ ¼ 0: ð24Þ
To obtain optimal control function T 0ðz; T Þ one should
solve the second equality in Eq. (23) in terms of T 0, The
result is Carnot control T0 in terms of T and z ¼ oR=oT ,

T 0 ¼ T eT
1� c�1oR=oT

� �1=2

: ð25Þ

This is next substituted into Eq. (24); the result is the (non-
linear) Hamilton–Jacobi equation

oR
os
þ cT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c�1oR=oT

p
�

ffiffiffiffiffiffiffiffiffiffiffi
T e=T

p	 
2

¼ 0 ð26Þ

which contains the extremum Hamiltonian of the extremal
process.

H T ;
oR
oT

� �
¼ cT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c�1oR=oT

p
�

ffiffiffiffiffiffiffiffiffiffiffi
T e=T

p	 
2

: ð27Þ

Eq. (26) differs from HJB equations as it refers to an extre-
mal path only and H is the extremum Hamiltonian.

Expressing extremum Hamiltonian (27) in terms of state
variable T and Carnot control T 0 yields an energy-like
function satisfying the following relations

EðT ; uÞ ¼ ol0

ou
u� l0 ¼ f0 �

of0

ou
¼ cT e ðT 0 � T Þ2

T 02
: ð28Þ

E is the Legendre transform of the work lagrangian
l0 ¼ �f0 with respect to the rate u ¼ dT=dt.

Assuming a numerical value of the Hamiltonian H, say
h,

cT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c�1z
p

�
ffiffiffiffiffiffiffiffiffiffiffi
T e=T

p	 
2

¼ h; ð29Þ

one can exploit the constancy of autonomous Hamiltoni-
ans to eliminate adjoint variable z. Combining Eq. (29)
with optimal condition (28), or an equivalent equation
using energy flow control u ¼ T 0 � T yields optimal rate
u ¼ _T in terms of temperature T and the constant H = h

_T ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
h=cT e

p
1��

ffiffiffiffiffiffiffiffiffiffiffiffi
h=cT e

p	 
�1
� �

T � nðh; T eÞT ; ð30Þ

where

nðh; T eÞ � �
ffiffiffiffiffiffiffiffiffiffiffiffi
h=cT e

p
1��

ffiffiffiffiffiffiffiffiffiffiffiffi
h=cT e

p	 
�1

ð31Þ

is an intensity index. Positive n refer to heating of resources
in the heat-pump modes, and the negative – to cooling in
engine modes. Eq. (30) describes the optimal trajectory in
terms of state variable T and constant h. The correspond-
ing optimal (Carnot) control is

T 0 ¼ ðnðh; T eÞ þ 1ÞT : ð32Þ

Now one can find the Hamiltonian representation of
extremal work. Substituting Carnot control (32) into work
functional (4) and integrating along an optimal path yields
an extremal work function
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V ðT i; T f ; hÞ ¼ cðT i � T fÞ � cT e ln
T i

T f
þ cT e nðhÞ

1þ nðhÞ ln
T i

T f

¼ cðT i � T fÞ � cT e ln
T i

T f
� cT e

ffiffiffiffiffiffiffi
h

cT e

r
ln

T i

T f
:

ð33Þ

This expression is valid for every process mode. Integration
of Eq. (30) subject to boundary conditions T ðsiÞ ¼ T i and
T ðsfÞ ¼ T f allows to express Eq. (33) in terms of the pro-
cess duration

V ðT i; T f ; si; sfÞ ¼ cðT i � T fÞ � cT e ln
T i

T f

� cT e½lnðT i=T fÞ�2

sf � si � lnðT i=T fÞ
: ð34Þ

Note that the reversible part of this function is the
change of the classical exergy between the states i and f.

7. Extensions for systems with nonlinear kinetics and internal

dissipation

In systems governed by nonlinear kinetics intensity
index n is no longer state independent constant. For a class
of ‘‘pseudo-Newtonian” systems [5] with and internal irre-
versibility U

_T ¼ nðh; T ; T e;UÞT : ð35Þ

The presence of resource temperature T in function n
proves that the relaxation curve is not exponential. An
example is the pseudo-Newtonian model of a radiation
engine described by the functional [5]

_W ¼ � _V
Z T e

T
chðT Þ � cvðT ÞU

T e

T þ vdT=dt

� �
dT ; ð36Þ

where chðT Þ � cvðT Þ þ P T ¼ ð16=3Þa0T 3, P T � dP=dT ¼
ð4=3Þa0T 3, and v ¼ qcvða0avÞ�1. Note that ratio dt=v is
the differential of non-dimensional number of transfer
units, ds. An alternative form of this integral is Eq. (16)
that has singled out the term with the entropy production.

The application of variational calculus to nonlinear
radiation fluids with the variable heat capacity cvðT Þ ¼
4aT 3, yields pseudo-exponential extremal (35). To single
out the environment temperature from nðh; T ; T e;UÞ,
entropy production Hamiltonian hr ¼ h=T e is introduced
in place of h. The optimal relaxation curve has then the
form

_T ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hr

UcvðT Þ

s
1��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr

UcvðT Þ

s !�1
0@ 1AT � nðhr;U; T ÞT :

ð37Þ

Again, the slope of the logarithmic rate n ¼ d ln T=ds is a
state dependent quantity. Operative Carnot control
assuring extremum power along an optimal path is
T 0 ¼ ð1þ nðhr;U; T ÞÞT . The slope nðhr;U; T Þ is a rate indi-
cator, positive for the resource’s heating and negative for
cooling. n is constant in Newtonian energy exchange for re-
sources with a constant cv. Both n and hr vanish for quasi-
static processes.

For the black radiation fluid cvðT Þ ¼ 4a0T 3, where a0 is
an universal constant, the optimal trajectory solving Eqs.
(37) is

�ð4=3Þa1=2
0 U1=2h�1=2

r ðT 3=2 � T i3=2Þ � lnðT=T iÞ ¼ s� si:

ð38Þ

The integration limits pertain to the initial state (i) and a
current state of the radiation fluid, i.e. temperatures T i

and T and ‘‘times” si and s. Optimal curve (38) is illustrated
in Fig. 2 of Ref. [5]. It refers to the case when the radiation
relaxation is subject to an operative constraint imposed on
T (resulting in non-vanishing partial derivative of V versus
T).

Eqs. (37) and (38) are determined by the second (i.e. dis-
sipative) term of Eq. (16). The corresponding extremum
work function per unit volume of flowing radiation is

V � hi
v� hf

v� T eðsi
v� sf

vÞ � ð4=3Þa1=2
0 h1=2

r U1=2T eðT i3=2 � T f3=2Þ
þ ð4=3Þa0T eð1�UÞðT i3 � T f3Þ ð39Þ

Explicit analytical form of Eq. (39) is not achievable in
models using Stefan–Boltzmann equation without pseudo-
Newtonian approximation, for which numerical appro-
aches must be applied. Also, the related exergy function,
Eq. (40) below, has an explicit analytical form.

When a constraint on the final temperature of radiation
is relaxed, corresponding with local maximum of power at
each time instant, the qualitative picture of the relaxation
curve may change. Relaxation of local power in this case
is illustrated in thesis [13]. This case applies only to engine
modes; it is singular from the viewpoint of optimal control
theory and refers to vanishing Pontryagin’s variables (tem-
perature adjoints) along whole or a finite part of the opti-
mal path. Its physical origin is associated with local
maxima of power, and shows a special relation between
local and global optima.
8. Analytical formula for generalized exergies in some

nonlinear systems

Radiation as a pseudo-Newtonian resource. By using per-
tinent boundary conditions, a formula for the finite-rate
exergy of radiation is obtained from Eq. (39). The particu-
lar extremal work which describes an exergy (generalized
or classical) should contain the environment temperature
as one of the boundary states. The finite-rate exergy is
the maximal work W max ¼ V ðT i; ti; T f ; tfÞ with T i ¼ T and
T f ¼ T e for the engine mode, and the negative minimal
work ð�W Þmin ¼ �V ¼ RðT i; ti; T f ; tfÞ with T i ¼ T e and
T f ¼ T for the heat-pump mode. Eqs. (37)–(39) of
pseudo-Newtonian model yield a finite-rate exergy



2722 S. Sieniutycz / International Journal of Heat and Mass Transfer 50 (2007) 2714–2732
AvðT ; T e; hrÞ ¼ Aclass
v ðT ; T e; 0Þ

� ð4=3Þa1=2
0 h1=2

r U1=2T eðT 3=2 � T e3=2Þ

þ ð4=3Þa0T eð1� UÞðT 3 � T e3Þ: ð40Þ

Upper sign refers to the heat-pump mode, lower one – to
the engine mode. The classical availability of radiation at

flow appears in the above equation in Jeter’s [14] form

Aclass
v ðT ; T e; 0Þ ¼ hv � he

v � T eðsv � se
vÞ

¼ hvð1� T e=T Þ
¼ ð4=3Þa0T 4ð1� T e=T Þ: ð41Þ

This result proves that the well-known Petela’s equation
[15,16] should be restricted to the ‘enclosed radiation’, i.e.
it is inapplicable to the exergy flux. As two modes are de-
scribed, common symbol T in Eqs. (40) and (41) refers to
the initial temperature of engine mode or the final temper-
ature of heat-pump mode of the process.

Compressible Newtonian resource without viscous fric-

tion. In this case integration can be performed analytically,
and leads to the generalized exergy of unit volume in the
form

AvðT ; T e; hrÞ ¼ AvðT ; T e; 0Þ þ cpv
T e n

1þ n

� �
lnðT=T eÞr

¼ cpv
T eðT=T e � 1Þ � lnðT=T eÞ þ lnðP=P eÞ

k�1
k

þ cpv
T e �

ffiffiffiffiffiffiffiffiffi
h

Ucpv

s !
þ ð1� UÞ 1��

ffiffiffiffiffiffiffiffiffi
h

Ucpv

s ! !
ln

T
T e :

ð42Þ

Compressibility effect is described by the pressure (P) term.
The last line term is non-classical. For vanishing intensities
h or n the classical thermal exergy is recovered.

Incompressible Newtonian resource without friction and

internal dissipation. A simple formula for thermal exergy
of an endoreversible system follows in terms of the
Hamiltonian

AvðT ; T e; hÞ ¼ cðT � T eÞ � cT e ln
T
T e � cT e n

1þ n
ln

T i

T f

¼ cðT � T eÞ � cT e ln
T
T e � cT e

ffiffiffiffiffiffiffi
h

cT e

r
ln

T
T e

¼ AvðT ; T e; 0Þ � T esr ð43Þ

or in terms of the non-dimensional duration s ¼ sf � si.

AðT ;T e;sf � siÞ ¼ cðT � T eÞ� cT e ln
T
T e�

cT e½lnðT=T eÞ�2

sf � si� lnðT i=T fÞ
¼ AðT ;T e;1Þ� T esr: ð44Þ

AðT ; T e;1Þ is the classical exergy, and sr ¼ min Sr is the re-
lated minimum entropy production. The upper sign refers
to the heat-pump mode and the lower sign to the engine
mode. The final thermodynamic result in the last lines of
Eqs. (42)–(44) is in agreement with the second law in the
Gouy-Stodola form [17].
By taking into account the entropy production, limits
for mechanical energy yield or consumption provided by
generalized exergies are stronger than those defined by
the classical exergy. This help an engineer in better evalua-
tion of energy limits in practical processes.

However, when models of radiation as a pseudo-Newto-
nian resource are insufficient and models applying Stefan–
Boltzmann equation in an exact way are necessary, HJB
and Hamilton–Jacobi equations cannot be solved analyti-
cally. Numerical solutions are then necessary, where
convergence of discrete optimization algorithms to contin-
uous solutions is important. These issues are discussed in
the forthcoming part of this paper, see also [3].

9. A discrete DP model for a nonlinear problem of maximum

power from radiation

We begin with the presentation of discrete dynamical
methods solving HJB equations, either analytically, via dis-
crete approximations, or numerically, with the help of a
computer.

As an example, let us recall the problem of minimum
work consumed in the radiation system subject to con-
straints on dynamics and duration [4,5]. For a symmetric

model of power yield (both reservoirs filled up with radia-
tion) the total power is described by Eq. (17)

_W ¼
Z tf

ti

_GcðT Þ 1� UT e

T 0

� �
b

T a � T 0a

ðU0ðT 0=T eÞa�1 þ 1ÞT a�1
dt;

ð17Þ

where the power exponent a = 4 for radiation and a = 1 for
a linear resource. The integrand of Eq. (17) represents
intensity of generalized profit, f0. Integral (17) has to be
maximized in the engine mode of the process subject to
the dynamical constraint (18)

dT
dt
¼ �b

T a � T 0a

ðU0ðT 0=T eÞa�1 þ 1ÞT a�1
: ð18Þ

As shown in Section 5, a HJB equation

�oV
ot
þmax

T 0ðtÞ
_GcðT Þð1�U

T e

T 0
ÞþoV

oT

� �
b

T a�T 0a

ðU0ðT 0=T eÞa�1þ1ÞT a�1

( )
¼ 0;

ð19Þ
needs to be solved to determine the extremum conditions
for the optimization problem involving Eqs. (17) and
(18). Here V ¼ max _W . As it is impossible to solve Eq.
(19) analytically, except for the case when a = 1, we de-
scribe here a way of numerical solving based on Bellman’s
method of dynamic programming (DP).

Considering computer needs we introduce a related dis-
crete scheme

_W N ¼
XN

k¼1

_GcðT kÞ � 1� UT e

T 0k

� �
b

T ka � T 0k
a

ðU0ðT 0k=T eÞa�1 þ 1ÞT ka�1 hk;

ð45Þ



S. Sieniutycz / International Journal of Heat and Mass Transfer 50 (2007) 2714–2732 2723
T k � T k�1 ¼ hkb
T 0k

a � T ka

ðU0ðT 0k=T eÞa�1 þ 1ÞT ka�1 ; ð46Þ

sk � sk�1 ¼ hk: ð47Þ
We search for maximum of the sum (45) subject to discrete
constraints (46) and (47).

To solve the set of Eqs. (45)–(47) one can use the
method of dynamic programming [10,11]. The method is
based on Bellman’s recurrence equation

Rnðxn; tnÞ ¼ min
un;hn
fln

0ðxn; tn; un; hnÞhn

þ Rn�1ðxn � fnðxn; tn; un; hnÞhn; tn � hnÞg: ð48Þ

Difference models linear in hn (those with h-independent
rates fk) are primary candidates to efficient solving of con-
tinuous equations of power systems characterized by their
own Hamilton–Jacobi–Bellman equations and Hamilton–
Jacobi equations.

We can now return to the difficult radiation problem
described by Eqs. (45)–(47). Applying Eq. (48) to this prob-
lem, the following recurrence equation is obtained

RnðT n; tnÞ¼min
un ;hn

_GcðT nÞ � 1�UT e

T 0n

� �
b

T na �T 0n
a

ðU0ðT 0n=T eÞa�1þ1ÞT na�1 hn

(

þRn�1 T n�hnb
T 0n

a �T na

ðU0ðT 0n=T eÞa�1þ1ÞT na�1 ; t
n�hn

 !)
:

ð49Þ

While the analytical solving of Eq. (19) is a tremendous
task, it is quite easy to solve recurrence Eq. (49) numeri-
cally. Low dimensionality of state vector for Eq. (49)
assures a decent accuracy of DP solution. Moreover, an
original accuracy can be significantly improved after per-
forming the so-called dimensionality reduction associated
with the elimination of time tn as the state variable. In
the transformed problem, without coordinate tn, accuracy
of DP solutions is high. Sections 13 and 14 discuss related
computational issues.

Our task now is to define conditions when numerical
schemes of dynamic programming [e.g. those for the set
(45)–(47)] converge to solutions of Hamilton–Jacobi–Bell-
man equation [e.g Eq. (19)]. The next section analyses this
problem for arbitrary objective and constraints.

10. Convergence of discrete DP algorithms to solutions of

HJB equations

Conditions determining when discrete optimization
schemes converge to solutions of Hamilton–Jacobi–Bell-
man equations (HJB equations) are quite involved. More-
over, systematic studies of the problem in the literature
are seldom [18–20]. To outline these conditions we consider
a family of optimization models obtained by discretization
of original continuous ones. In this case one has to deter-
mine necessary optimality conditions of a general discrete
process governed by a work criterion WN in the sum form
W N ¼
XN

n¼1

f0ðxn; tn; un; hnÞhn; ð50Þ

subject to constraints resulting from difference equations

xn
i � xn�1

i ¼ fiðxn; tn; un; hnÞhn: ð51Þ
The scalar f0 is the rate of the profit generation. Super-

scripts refer to stages and subscripts to coordinates. The
integer n ðn ¼ 1; . . . ;NÞ is a discrete time also called stage
number, the entity that should be distinguished from con-
tinuous time t. The latter is usually the physical time (t is
the chronological time in unsteady-state operations and
holdup or residence time in steady cascade operations).
Both n and t are monotonously increasing. The s-dimen-
sional vector x ¼ ðx1; . . . ; xsÞ is the state vector, and the
r-dimensional vector u ¼ ðu1; . . . ; urÞ is the control vector,
where xn 2 Es, un 2 Er and rate functions f n

0 and f n
i are

continuously differentiable always in x and h, but not
always in u. While hn is a control-type quantity, it is
excluded from the coordinates of vector u, i.e. it is treated
separately in the optimization model. The rate change of
state coordinate xi in time t is ith component of s-dimen-
sional vector of rates, f. The change of time t through
the stage n defined as hn ¼ tn � tn�1 is called the time
interval.

The s + 1-dimensional vector ~x ¼ ðx; tÞ is also used
which is the enlarged state vector describing the space-time.
Usually one assumes that a control sequence {un} and the
corresponding trajectory fxn; tng are admissible, i.e. that
they satisfy the control constraint un 2 Un and the state-
space constraint ~xn 2 ~X n.

For work production problems criterion (50) is maxi-
mized, for work consumption a minimum of the negative
of (50) is sought. In optimization problems with con-
strained duration tN � t0 (the so-called fixed-horizon prob-
lem) discrete model must explicitly include an equation
defining time interval hn, either as the increment of a
monotonously increasing state coordinate satisfying an
equation xn

sþ1 � xn�1
sþ1 ¼ hn or as the increment of usual time

tn � tn�1 ¼ hn: ð52Þ
The monotonic increase of the time-like coordinate,

implying non-negative h at each stage n, is crucial for many
properties of model (50)–(52). Various discretization
schemes for constraining differential equations, such as,
e.g. Eq. (18), lead to discrete models either linear or nonlin-
ear in hn. Throughout the whole paper models with free
(unconstrained) intervals hn are considered as only those
that are able to achieve their own continuous limits.

Two classes of discrete models, linear and nonlinear in
free hn, are distinguished when considering convergence
of their optimality conditions to continuous Hamilton–
Jacobi–Bellman (HJB) equations. In the first class HJB
equations follow straightforwardly from optimality condi-
tions. In the second class, a condition of weak nonlinearity
of the discrete rates with respect to hn (discussed below) is
sufficient.
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In each case stage optimality criteria of Caratheodory–
Boltyanskii–Sieniutycz type transferred to discrete systems
(CBS criteria, [12,21,22]) are valid. For a general function
of optimal profit

V n � max
Xn

k

f k
0 ðxk; tk; uk; hkÞhk ð53Þ

a general optimality criterion at stage n that uses the
h-dependent rates has the form

0 ¼ max
un;hn;xn;tn

ff n
0 ðxn; tn; un; hnÞhn � V nðxn; tnÞ

� V n�1ðxn � fnðxn; tn; un; hnÞhn; tn � hnÞg: ð54Þ

(We may also use functions of costs type, local costs
l0 ¼ �f0: and integral optimal costs R = �V.)

For a special mode of discretization with h-free rates f

criterion (54) refers to the ‘‘standard” or ‘‘canonical”
model associated with all involved equations linear in hn.
It may then be shown that these models [11,18] are charac-
terized by a constant Hamiltonian that satisfies a discrete
HJB equation whose convergence to the continuous limit
is a relatively easy problem. Yet for h-dependent rates the
situation is more complicated and a condition of a weak
dependence of rates on the time interval is required (see
below).

Criterion (54) can be applied to derive a set of usable
(Hamiltonian-based) optimality conditions including those
with respect to xn and time tn. With Eq. (54) one can then
pass to an algorithm of discrete maximum principle and
related canonical equations. This issue is not discussed in
this paper, where a dynamic programming equation [fol-
lowing from Eq. (54) for fixed states and times] is most
essential as it provides a direct information about the extre-
mum performance function.

Below we present a set of optimality conditions for the
general process with h-dependent rates. The process is
described by Eqs. (50)–(54) with h-dependent rates. From
these conditions those for systems linear in hn will easily
follow for h-independent rates and Hamiltonian.

Optimizing in Eq. (54) time intervals hn and controls un

in the interior of the admissible control set leads respec-
tively to two extremum conditions:

� oV n�1=otn�1 þ f n
0 ðxn; tn; hn; unÞ � ðoV n�1=oxn�1Þ

� fnðxn; tn; un; hnÞ þ hnoff n
0 ðxn; tn; hn; unÞ

� ðoV n�1=oxn�1Þ � fnðxn; tn; un; hnÞg=ohn ¼ 0 ð55Þ

and

off n
0 ðxn; tn;hn;unÞ� ðoV n�1=oxn�1Þ � fnðxn; tn;un;hnÞg=oun ¼ 0:

ð56Þ

For convex functions and constraining set un 2 U n,
stationarity condition (56) allows to find optimal control
un from the maximum condition for a Hamiltonian
expression
un ¼ arg max
un

f�oV n�1=otn�1 þ f n
0 ðxn; tn; hn; unÞ

� ðoV n�1=oxn�1Þ � fnðxn; tn; hn; unÞg: ð57Þ
Eq. (57) describes a maximum principle with respect to un

for a ‘Hamiltonian’, i.e. expression in braces of this equa-
tion. The so-called enlarged Hamiltonian expression is used
that includes the partial derivative of V with respect to
time t.

Discrete HJB equations. Eq. (55) proves that the discrete
Hamilton–Jacobi–Bellman structure is not attained when
the discrete model is nonlinear in time intervals hn. In fact,
it follows from Eqs. (55) and (56) that a discrete HJB equa-
tion for the optimum profit function

� oV n�1=otn�1 þmax
un
ff n

0 ðxn; tn; unÞ

� ðoV n�1=oxn�1Þ � fnðxn; tn; unÞg ¼ 0; ð58Þ

or, an equivalent equation, in terms of the cost functions
R = �V and l0 ¼ �f0,

oRn�1=otn�1 þmax
un
f�ln

0ðxn; tn; unÞ

þ ðoRn�1=oxn�1Þ � fnðxn; tn; unÞg ¼ 0; ð59Þ
cannot be obtained for models nonlinear in hn. This is why
variable hn is absent in rates of Eqs. (58) and (59), i.e. only
models linear in hn are admitted therein.

Discrete Hamilton–Jacobi equations. When optimal con-
trols hn and un are evaluated in terms of oV n�1=oxn�1; xn

and tn from Eqs. (55) and (56) and next substituted into
(55), the result constitutes a discrete counterpart of the
Hamilton–Jacobi equation.

For models linear with respect to hn one obtains in terms
of R = �V

oRn�1=otn�1þHn�1ðxn
1; . . . ;x

n
s ; t

n;oRn�1=oxn�1
1 � � �oRn�1=oxn�1

s Þ¼ 0;

ð60Þ
whereas for those nonlinear in hn Hamiltonian Hn�1 is
replaced by partial derivative hh � oðhnH n�1Þ=ohn

oRn�1=otn�1þhn�1
h ðxn

1; . . . ;x
n
s ; t

n;oRn�1=oxn�1
1 � � �oRn�1=oxn�1

s Þ¼ 0:

ð61Þ
In fact, the replacement of Hn�1 by the derivative hh �
oðhnHn�1Þ=ohn in the second case leads to the structure that
is explained in the enlarged space-time in terms of (vanish-
ing) partial derivative of the enlarged Hamiltonian func-
tion with respect to free control, hn [19]. Note that both
equations are nonlinear in terms of derivatives oRn�1=oxn�1.

The above results lead to convergence conditions of dis-
crete computational schemes to continuous Hamilton–
Jacobi equations of physical processes. To this end a
notion of the weak dependence of the discrete Hamiltonian
on h is important. Note that the Hamiltonian is a weighted
measure quantifying dependence of the discrete rate vector
on time interval h.

Definition. The h-differentiable Hamiltonian function
Hn�1 is said to be weakly dependent on hn in a vicinity of
0+ if for any positive number e a positive number g exists
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such that for a sufficiently small positive hn
6 g the

absolute value of the product IhnoðH n�1Þ=ohnI 6 e, for
n ¼ 1; 2; . . . ;N . This means that in a vicinity of 0+ the
reciprocal of derivative oðH n�1Þ=ohn tends to zero slower
than hn itself or that limðhnoðH n�1Þ=ohnÞ ¼ 0 for hn ! 0þ
regardless the form of rate functions fk.

In fact, many popular discretization schemes lead to
discrete rates and Hamiltonians weakly dependent on hn

for positive h in a vicinity of the point h ¼ 0. For Hamilto-
nians weakly dependent on hn the following corollary
holds.

Corollary. Assume fixed end states ðx0; xN Þ, end times

ðt0; tN Þ and an arbitrarily large number M. For a sufficiently

large total number of stages N > M each free interval hn is
sufficiently close to zero, i.e. lim hn ¼ 0þ for N !1 by the

monotonicity property of time coordinate t. Then for

unconstrained intervals hn and each Hamiltonian func-

tion H n�1ðxn
1; . . . xn

s ; t
n;�oV n�1=oxn�1

1 . . .� oV n�1=oxn�1
s ; hnÞ

weakly dependent on hn in a vicinity of 0+ classical

Hamilton–Jacobi equation holds in the limit of N !1.

Proof. For Hamiltonians H n�1 weakly dependent on hn in
a vicinity of 0+ and a sufficiently large N the derivative
oðhnH n�1Þ=ohn is sufficiently close to Hn�1 for each n ¼
1; . . . N . In the limiting case of N !1 the sequence of free
hn satisfies the conditions: lim hn ¼ 0þ and lim oðhnH n�1Þ=
ohn ¼ lim H n�1 ¼ Hðx; t; oR=oxÞ. Eq. (61) then goes over
into the Hamilton–Jacobi equation of a continuous process

oR=ot þ Hðx1; . . . ; xs; t; oR=ox1 � � � oR=oxsÞ ¼ 0: ð62Þ

The above corollary assures that the limiting Hamilton–
Jacobi equation of a continuous system is obtained in
unique form (62), regardless the discretization mode and
the form of underlying discrete equation, Eq. (60) or
(61). Discrete Hamiltonians weakly dependent on hn in a
vicinity of 0+ are common in thermodynamic systems
described in spaces of arbitrary state variables rather than
extensive thermodynamic coordinates. h
11. Discrete approximations and time adjoint as a Lagrange

multiplier

In this section we consider another discrete example
whose solution converges to that for a continuous problem
of power generation. Yet, for brevity of formulas, we
restrict ourselves to systems in which nonlinearities are
absent in process kinetics although they are still present
in the power expression. We obtain the solution of a HJB
equation by the discrete approximations produced by the
method of dynamic programming and simultaneous state
dimensionality reduction (elimination of time coordinate)
by using a Lagrange multiplier.

First we shall outline generation of costs in terms of the
Lagrangian multiplier k for the duration constraint. As the
time adjoint, k is constant in autonomous systems.
Consider a minimum of consumed work with con-
straints imposed on discrete dynamics and process duration

RnðT n; snÞ ¼
Xn

k¼1

c 1� U0
T e

T 0k

� �
ðT k � T k�1Þ

¼
Xn

k¼1

c 1� U0
T e

T 0k

� �
ðT 0k � T kÞhk; ð63Þ

T k � T k�1 ¼ hkðT 0k � T kÞ; ð64Þ
sk � sk�1 ¼ hk: ð65Þ

Observe that the above difference equations model a con-
tinuous problem of minimum work subject to the linear
kinetic constraint _T ¼ T 0 � T [2].

Exploiting constancy of k we eliminate state variable s
by introducing a (primed) criterion of modified work

R0nðT n; kÞ ¼ min
Xn

k¼1

c 1� U0
T e

T 0k

� �
ðT k � T k�1Þ þ khn

� �
;

ð66Þ

or, in view of state Eq. (64)

R0nðT n;kÞ ¼min
Xn

k¼1

c 1�U0
T e

T 0k

� �
þ k

T 0k � T k

� �
ðT k � T k�1Þ:

ð67Þ

In this problem, idea of parametric representations for the
principal performance function, Lagrange multiplier and
process duration had proven its usefulness. While these
representations are unnecessary for linear optimization
problems, they are quite effective to describe solutions of
nonlinear problems, where optimal work, Lagrange multi-
plier and optimal duration are obtained in terms of an opti-
mal control variable as a parameter.

To begin with we determine optimality conditions from
Eq. (67). We consider two initial process stages, 1 and 2.
The procedure leading to parametric representations is
defined below.

Work equation (or a profit equation) modified by the
presence of the Lagrange multiplier k, yet without a mini-
mization sign

R01ðT 1; T 01; kÞ ¼ c 1� U0
T 2

T 01

� �
þ k

T 01 � T 1

� �
ðT 1 � T 0Þ

ð68Þ

becomes a component of a parametric representation of
R01ðT 1; kÞ provided that the following procedure is
implemented:

1. k is determined from the extremum condition of work
function R01 with respect to a control variable, here with
respect to Carnot control T 01

k ¼ cU0T e ðT 01 � T 1Þ2

ðT 01Þ2
: ð69Þ
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2. Extremum k is substituted into the work function R01,
and the result of this substitution

R01ðT 1;T 01Þ ¼ c 1�U0
T e

T 01

� �
þ cU0T e T 01� T 1

ðT 01Þ2

( )
ðT 1� T 0Þ

ð70Þ
is taken together with the expression for stationary k.

In view of the above, parametric representation of work
function R01ðT 1; kÞ in terms of Carnot control as a param-
eter is given by the set of Eqs. (69) and (70). After simpli-
fication of work equation the final form of the
representation is

R01ðT 1; T 01Þ ¼ c 1� U0T e T 1

ðT 01Þ2

 !
ðT 1 � T 0Þ

k ¼ cU0T e 1� T 1

T 01

� �2

: ð71Þ

In this example it is possible to eliminate the parameter T 01

which leads to explicit function of work consumption for
n ¼ 1

R01ðT 1;T 0;kÞ¼ cðT 1�T 0Þ� cU0T e 1��
ffiffiffiffiffiffiffiffiffiffiffiffi

k
cU0T e

r !2
T 1�T 0

T 1

� �
:

ð72Þ
Corresponding optimal control satisfies an equation

T 01 ¼ T 1 1��
ffiffiffiffiffiffiffiffiffiffiffiffi

k
cU0T e

r !�1

ð73Þ

obtained after solving of Eq. (69) with respect to T 01.
Yet, the elimination of the parameter is not always pos-

sible, and then parameter dependent-functions constitute
the only representation of the solution. It is just this case
when parametric representations are inevitable and helpful.

Let us proceed further. Optimal work supply to two-
stage system R02ðT 2; kÞ is described by an equation

R02ðT 2;kÞ¼min
T 1

cðT 2�T 1Þ�cU0T e 1��
ffiffiffiffiffiffiffiffiffiffiffiffi

k
cU0T e

r !2
T 2�T 1

T 2

� �8<:
þcðT 1�T 0Þ�cU0T e 1��

ffiffiffiffiffiffiffiffiffiffiffiffi
k

cU0T e

r !2
T 1�T 0

T 1

� �9=;;
whence, after making simplifications

R02ðT 2; kÞ ¼ min
T 1

cðT 2 � T 0Þ � cU0T e 1��
ffiffiffiffiffiffiffiffiffiffiffiffi

k
cU0T e

r !2
8<:

� T 2 � T 1

T 2
þ T 1 � T 0

T 1

� �9=;: ð74Þ

Optimal interstage temperature between stages 1 and 2, T1,
satisfies the stationarity condition for expression in the
large bracket of the above equation
o

oT 1

T 2 � T 1

T 2
þ T 1 � T 0

T 1

� �
¼ T 0

ðT 1Þ2
� 1

T 2
¼ 0: ð75Þ

Therefore optimal interstage temperature T1 is the geomet-
ric mean of boundary temperatures of both considered
stages

T 1 ¼ ðT 0T 2Þ1=2
: ð76Þ

The minimum value of optimized expression (75) is

min
T 1

T 2 � T 1

T 2
þ T 1 � T 0

T 1

� �
¼ T 2 �

ffiffiffiffiffiffiffiffiffiffi
T 0T 2
p

T 2
þ

ffiffiffiffiffiffiffiffiffiffi
T 0T 2
p

� T 0ffiffiffiffiffiffiffiffiffiffi
T 0T 2
p

¼ 2ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
T 0=T 2

q
Þ: ð77Þ

This leads to the optimum work function for n = 2

R02ðT 2; kÞ ¼ cðT 2 � T 0Þ

� 2cU0T e 1��
ffiffiffiffiffiffiffiffiffiffiffiffi

k
cU0T e

r !2

1� T 0

T 2

� �1=2
 !

:

ð78Þ
For n ¼ 3 we apply an expression for local work

K 03ðT 3; T 2; kÞ ¼ cðT 3 � T 2Þ

� cU0T e 1��
ffiffiffiffiffiffiffiffiffiffiffiffi

k
cU0T e

r !2
T 3 � T 2

T 3

� �
;

ð79Þ
which has the same structure as the one-stage function of
Eq. (72), but the indices are shifted ahead by the unity.
In the recurrence equation for n ¼ 3, explicit work function
R03ðT 3; kÞ is the result of optimization described by the
following expression

R03ðT 3; kÞ ¼ min
T 2

cðT 3 � T 2Þ � cU0T e 1��
ffiffiffiffiffiffiffiffiffiffiffiffi

k
cU0T e

r !2
8<:

� T 3 � T 2

T 3

� �
þ cðT 2 � T 0Þ � 2cU0T e

� 1��
ffiffiffiffiffiffiffiffiffiffiffiffi

k
cU0T e

r !2

1� T 0

T 2

� �1=2
 !9=;:

After simplifying we obtain

R03ðT 3; kÞ ¼ min
T 2

cðT 3 � T 0Þ � cU0T e 1��
ffiffiffiffiffiffiffiffiffiffiffiffi

k
cU0T e

r !2
8<:

� T 3 � T 2

T 3

� �
þ 2 1� T 0

T 2

� �1=2
 !" #9=;: ð80Þ

Consequently, optimal interstage temperature T2 satisfies
the stationarity condition

o

oT 2

T 3 � T 2

T 3
þ 2 1� T 0

T 2

� �1=2
 ! !

¼ 0: ð81Þ



Fig. 4. Two typical functions describing optimal duration s ¼ RHn in
terms of Lagrange multiplier k in a cascade of power generation units.
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Performing the differentiation with respect to T2 one ob-
tains in terms of T 0 and T3

T 2 ¼ ðT 0Þ1=3ðT3Þ2=3 ð82Þ
and

T 1 ¼ ðT 0T 2Þ1=2 ¼ ðT 0Þ1=2½ðT 0Þ1=3ðT 3Þ2=3�1=2

¼ ðT 0Þ2=3ðT 3Þ1=3
: ð83Þ

Let us eliminate T 0 and determine T2 in terms of T1 i T3.
We obtain

T 2 ¼ ðT 0Þ1=3ðT 3Þ2=3 ¼ ðT 1Þ1=2ðT 3Þ�1=6ðT 3Þ2=3

¼ ðT 1Þ1=2ðT 3Þ1=2
: ð84Þ

Therefore, as one could expect, also optimal interstage
temperature T2 is the geometric mean of boundary temper-
atures of two considered stages

T 2 ¼ ðT 1T 3Þ1=2
: ð85Þ

Substitution of temperature T 2 ¼ ðT 0Þ1=3ðT 3Þ2=3 into work
function (80) yields

R03ðT 3; kÞ ¼ cðT 3 � T 0Þ � cU0T e 1��
ffiffiffiffiffiffiffiffiffiffiffiffi

k
cU0T e

r !2

� 1� T 0

T 3

� �1=3
 !

þ 2 1� T 0

T 3

� �1=3
 !" #

;

which can be simplified to the form

R03ðT 3; kÞ ¼ cðT 3 � T 0Þ

� 3cU0T e 1��
ffiffiffiffiffiffiffiffiffiffiffiffi

k
cU0T e

r !2

1� T 0

T 3

� �1=3
 !

:

ð86Þ
Comparing this expression with corresponding ones for
n ¼ 1 and n ¼ 2, Eqs. (72) and (78), leads to optimal work
function for an arbitrary n

R0nðT n; kÞ ¼ cðT n � T 0Þ

� ncU0T e 1��
ffiffiffiffiffiffiffiffiffiffiffiffi

k
cU0T e

r !2

1� T 0

T n

� �1=n
 !

:

ð87Þ
The corresponding optimal duration is the partial deriv-

ative of optimal work function with respect to Lagrangian
multiplier k

sn ¼ oR0nðT n; kÞ
ok

¼ n 1��
ffiffiffiffiffiffiffiffiffiffiffiffi

k
cU0T e

r !
�

ffiffiffiffiffiffiffiffiffiffiffiffi
k

cU0T e

r !�1

1� T 0

T n

� �1=n
 !

:

ð88Þ
Qualitative properties of the duration functions sn ¼ Rhn

are illustrated in Fig. 4. Eq. (89) refers to linear kinetics,
in which case the curve intersects the axis of k for k ¼ c.
In nonlinear systems with a variable c the intersection point
may move to large values of k, Fig. 4. In any process, lin-
ear or not, k is monotonically decreasing function of
duration.

Knowledge of partial derivative of optimal work func-
tion with respect to Lagrangian multiplier k is essential
when one wish to return to original work function
RnðT n; snÞ (without Lagrange multiplier term). In this oper-
ation the Legendere transformation plays an essential role
(Section 12). Yet, before its implementing consider some
properties of intensity parameter n.

Applying the geometric sequence property for optimal
path in the considered example

T 0

T n ¼
T 0

T 1

T 1

T 2
� � � T

n�1

T n ¼
T n�1

T n

� �n

; ð89Þ

we obtain

T n�1

T n ¼
T 0

T n

� �1=n

: ð90Þ

With these results we can easily prove the equality of a
mean rate and a local rate. These rates are described,
respectively by the first and the last equality of the follow-
ing equation

n � n
sn

1� T 0

T n

� �1=n
 !

¼ n
sn

1� T n�1

T n

� �
¼ T n � T n�10

T nhn :

ð91Þ
Taking into account the limiting value of the expression

lim
n!/

n 1� ðT 0=T nÞ1=n
	 


¼ lnðT n=T 0Þ;

we note that the continuous limit of the mean n is the
change of the temperature logarithm per unit of time.

Local and mean intensities n are in general different
quantities. Yet, in processes with linear kinetics, considered
in the present example, there is no need to distinguish
between them and the same symbol for both is used in
equations.
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Writing the duration formula, Eq. (88), in the form

n�1 � sn

n
1� T 0

T n

� �1=n
 !�1

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi

k
cU0T e

r !�1

� 1; ð880Þ

we find an useful equality determining the Lagrange
multiplier in terms of the process intensity (mean or
instantaneous)

k ¼ cU0T e n
nþ 1

� �2

: ð92Þ

Two values of n for a given k correspond with heating and
cooling of the resource fluid in heat-pump and engine
modes (upgrading and downgrading of the resource). Both
k and n vanish in reversible quastitstic processes.

As the following equality is valid

1��
ffiffiffiffiffiffiffiffiffiffiffiffi

k
cU0T e

r
¼ 1

nþ 1
ð93Þ

optimal work function in terms of n assumes the form

R0nðT n; nÞ ¼ cðT n � T 0Þ � cU0T e

ð1þ nÞ2
n 1� T 0

T n

� �1=n
 !

: ð94Þ

We find that the limiting value of function R0nðT n; nÞ in a
quasi-static ðn ¼ 0Þ and reversible process ðU ¼ 1Þ repre-
sents the change of classical thermal exergy.

R0nðT n; 0Þ ¼ cðT n � T 0Þ � cT e lnðT n=T 0Þ: ð95Þ

Therefore optimal work function (94) is a finite-rate
exergy of the considered discrete process. In the following
section other functions of this kind are obtained.
12. Legendre transform and original work function

The minimum of consumed work (63) is described by
original principal function RnðT n; snÞ. This function is the
Legendre transform of R0nðT n; kÞ with respect to k

RnðT n; snÞ ¼ R0nðT n; kÞ � ksn

¼ R0nðT n; kÞ � k
oR0nðT n; kÞ

ok
: ð96Þ

For our example we obtain

RnðT n;kÞ¼ cðT n�T 0Þ

�ncU0T e 1��
ffiffiffiffiffiffiffiffiffiffiffiffi

k
cU0T e

r !2

1� T 0

T n

� �1=n
 !

�kn 1��
ffiffiffiffiffiffiffiffiffiffiffiffi

k
cU0T e

r !
�

ffiffiffiffiffiffiffiffiffiffiffiffi
k

cU0T e

r !�1

1� T 0

T n

� �1=n
 !

:

ð97Þ

which should be transformed to space of variables T n and
sn. In transformations we use intensity n as an intermediate
variable to increase their lucidity. Applying Eq. (92) we
obtain
sn ¼ oR0nðT n; kÞ
ok

¼ n
n

1� T 0

T n

� �1=n
 !

ð98Þ

and

RnðT n; nÞ ¼ cðT n � T 0Þ

� cU0T e 1

1þ n

� �2

n 1� T 0

T n

� �1=n
 !

� kðnÞ
n

n 1� T 0

T n

� �1=n
 !

; ð99Þ

where function describing k in terms of n is given by Eq.
(92). Using Eq. (93) in (99) we find

RnðT n; nÞ ¼ cðT n � T 0Þ � cU0T e

1þ n
n 1� T 0

T n

� �1=n
 !

: ð100Þ

This is also a finite-rate exergy, yet it differs from function
R0nðT n; nÞ of Eq. (94) by the structure of n term. To single
out from this equation a n-independent term we write
ð1þ nÞ�1 as 1� n=ð1þ nÞ and, then,

RnðT n; nÞ ¼ cðT n � T 0Þ � cU0T en 1� T 0

T n

� �1=n
 !

þ n
1þ n

cU0T en 1� T 0

T n

� �1=n
 !

: ð101Þ

Eq. (91) can next be used to express the last (rate-depen-
dent) term of Eq. (101) in terms of process duration. We
obtain

n
1þ n

�
n 1� T 0

T n

	 
1=n
� �

sn þ n 1� T 0

T n

	 
1=n
� � ð102Þ

and

RnðT n;snÞ¼ cðT n�T 0Þ�cU0T en 1� T 0

T n

� �1=n
 !

þcU0T e n 1� T 0

T n

� �1=n
 !( )2

snþn 1� T 0

T n

� �1=n
 ! !�1

:

ð103Þ

First two components of this work function are of static
origin. The function describes a minimum work supplied
to a resource to upgrade it from T 0 to T n in a finite
(non-dimensional) time sn. Like in the case of primed func-
tion R0 a limiting value of RnðT n; snÞ in a quasi-static pro-
cess ðU0 ¼ 1; sn !1Þ describes a change of classical
thermal exergy, Eq. (95).

13. Numerical approaches applying dynamic programming

Numerical aspects of DP algorithms are only briefly
mentioned here as there is a literature available that
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discusses these issues. Problems of grid expansion and
‘‘curse of dimensionality”are usually main difficulties
[20,22,23].

Optimal performance functions are direct outcome of
numerical methods which apply the dynamic program-
ming. Optimal control problems of both continuous and
discrete processes with a single independent variable (time
or length) can be treated in the framework of a common
discrete formalism. As the computer needs require a dis-
crete set of equations, prior discretizing of ordinary differ-
ential equations is required.

Now we describe the numerical generation of optimal
function V n ¼ max W . Assume that at the stage n (duration
Dtn ¼ hn) a profit function Dn ¼ Dnðxn; tn; un; hn; nÞ is given.
In a maximum work problem Dn ¼ f n

0 hn, where Dn is the
work produced at stage n. The total work (profit) at the
n-stage subprocess equals RDn ¼ Rf m

0 hm. Along with dis-
crete state equations and local constraints, various data
of Dn – analytic, graphic or tabular – are sufficient to
develop computational principles for cascade processes
with arbitrary number of stages. It is, however, important
that Dn is properly expressed at the stage n as a function
of state xn, time tn, and controls ðun; hnÞ. Data of optimal
work functions V 1; . . . ; V n; . . . ; V N should be generated
over subprocesses composed respectively of the stage 1,
stages 1 and 2,. . . stages 1,2,. . .,n,. . . and, finally, stages
1; 2; . . . ;N .

For a given set of difference constraints (51) each profit
function, e.g. optimal work potential V n, is found from
Bellman’s equation of dynamic programming. A typical
form of this equation in terms of enlarged state vector
~xn � ðxn; tnÞ and one-stage profit Dn is

V nð~xnÞ ¼ max
un;hn
fDnð~xn; un; hnÞ þ V n�1ð~xn � ~fnð~xn; un; hnÞhnÞg:

ð104Þ

Since one has to generate computational data within a def-
inite domain of the variables ~x, one can conveniently omit
stage superscript n at the (enlarged) state vector of Eq.
(104)

V nð~xÞ ¼ max
un;hn
fDnð~x; un; hnÞ þ V n�1ð~x� ~fnð~x; un; hnÞhnÞg:

ð105Þ

The solution to Eq. (104) or (105) is obtained iteratively in
form of tables for n ¼ 1; 2; . . . ;N , which describe sequence
of functions V nð~xÞ, unð~xÞ and hnð~xÞ. The iterative procedure
starts with V 0 ¼ 0. Potential V nð~xÞ is in general time depen-
dent even if the process is autonomous.

Organization of calculations requires a suitable compu-
tational grid. In the nodes of this grid data of optimal func-
tions and optimal controls are computed and stored. A
total number of stages, N, is assumed. Numerical DP algo-
rithm generates potential function V nð~xÞ from function
V n�1ð~xÞ of n � 1 stage subprocess and state transforma-
tions, Eqs. (51) and (52). In agreement with Bellman’s opti-
mality principle, consistent with Eq. (104), a computer
maximizes the sum of optimal cost of all previous n � 1
stages (optimal function V n) and non-optimal profit eDn

at the stage n. To determine V nð~xÞ exactly for a definite
n, the computer would have to numerically determine val-
ues of this function for every value of ~x, an impossible task.
Therefore, these values are determined on a discrete subset
of ~x, and the data are used in the way that makes possible
evaluation of V nð~xÞ everywhere. If h~xI, ~xIIi is the interval of
interest, one can take ~xI ¼ Ad and ~xII ¼ Bd, where d is a
small accepted value. The vectors A and B are respectively
computed as ~xI=d and ~xII=d. The quantity d cannot be too
large, because the results accuracy is then poor. It cannot
be too small either, as the computation time becomes very
long. The discrete subset of ~x, for which the values V nð~xÞ
are computed for various n, has the form

~x ¼ Ad; ðAþ 1Þd; . . . ; ðB� 1Þd;Bd: ð106Þ

This refers to the linear grid of values ~x ¼ ad, where a = A,
Aþ 1; . . . ;B. Other values of V nð~xÞ, e.g. those in an inter-
val had; ðaþ 1Þdi, are defined by accepting V nðadÞ or
V n½ðaþ 1Þd� depending on location of xd with respect to
ðaþ 1=2Þd, or by using interpolation, e.g.

V nð~xÞ ¼ V nðAdÞ þ V nððAþ 1ÞdÞ þ V nðAdÞ
d

ð~x� aÞ;

ad 6 ðaþ 1Þd: ð107Þ

The discrete subset of admissible controls is defined in a
similar way. For example, when constrains imposed on
are described by inequality u� 6 un

6 u�, variable may
assume only the discrete values

u� ¼ Ecþ ðEþ 1Þc; . . . ; ðF� 1Þc;Fc ¼ u� ð108Þ

for an appropriately small value c. This refers to the linear
grid of controls u ¼ bd, where b ¼ E, Eþ 1; . . . ;F� 1;F.

With Eq. (105) optimal controls are determined from
the formula

funð~xÞ; hnð~xÞg ¼ arg max
unhn

; f~Dnð~x; un; hnÞ

þ V n�1ð~x� ~fnð~x; un; hnÞhnÞg ð109Þ

along with the sequence of the optimal functions V n. The
first optimal function, V 1ð~xÞ, and the corresponding opti-
mal controls for n ¼ 1 follow from the application of the
initial condition V 0ð~xÞ ¼ 0 in Eqs. (105) and (109); this
yields

V 1ð~xÞ ¼ max
u1;h1
feD1ð~x; u1; h1Þg ð110Þ

and

fu1ð~xÞ; h1ð~xÞg ¼ arg max
unhn

; feD1ð~x; u1; h1Þg: ð111Þ

To find these functions, the computer chooses the first
point ~x ¼ Ad ¼ ðA1d;A2dÞ and compares eD1ðAd;E1c;E2cÞ
with eD1ðAd; ðE1 þ 1Þc;E2cÞ. The larger of these values is
stored and compared with eD1ðAd; ðE1 þ 2Þc;E2cÞ, etc. This
process is continued until the whole discrete set of controls
ðu1; h1Þ is exhausted. The largest of the so-obtained values
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is always a maximum of eD1 with respect to ðu1; h1Þ for a
fixed discrete point ~x. The coordinates of u1 and h1 which
maximize eD1 are stored. Analogous operations are next
performed for ~x ¼ ððA1 þ 1Þd;A2dÞ; ððA1 þ 2Þd;A2dÞ, and
so on. Again, this leads to maximum of eD1 and optimal
values of u1 and h1. The generation of data takes place
for various points ~x (different nodes of the grid).

The computer output are the DP tables with optimal
data: V 1ð~xÞ, h1ð~xÞ and u1ð~xÞ.

For n ¼ 2 (two-stage process), and for larger n, the pro-
cedure is analogous but uses Eqs. (104) and (109) in their
complete form. Data of V n�1 are found in tables describing
previous computations, for cascade with n � 1 stages.
When using these data a difficulty can appear which is
called ‘the danger of grid expansion’. It follows from the
fact that the values V n�1ð~xÞ were computed within the
range ~xI 6 ~x 6 ~xII, but the computation of V nð~xÞ from
Eq. (104) requires the knowledge of V n�1ð~xTÞ for the trans-
formed state ~xT � ~x� ~fnð~x; un; hnÞhn. This means that for
some forms of rate functions ~f the computation of V nð~xÞ
requires the knowledge of values V n�1ð~xÞ for ~x located out-
side of the range ~xI 6 ~x 6 ~xII. Therefore, to evaluate V nð~xÞ
within the range satisfying ~xI 6 ~x 6 ~xII it may be necessary
to determine V n�1ð~xÞ within a boundary which is larger
than that described by the inequality ~xI 6 ~x 6 ~xII.

The procedure leads to the optimal values of Vn, hn and
un stored at each node of the grid of ~x, for each n. These
values constitute discrete representations of optimal func-
tions V nð~xÞ; hnð~xÞ and unð~xÞ. Additionally, values of coor-
dinates of the transformed state, ~xT � ~x� ~fnð~x; un; hnÞhn,
can be stored. Data of ~xT describe optimal inlet states to
the stage n in terms of outlet states from this stage, ~x.

Backward reading of the solution. Dynamic program-
ming tables, which describe all computed data, can be used
to find the solution of a particular (N-stage) problem in
which final values of ~xN � ~xfand N are prescribed. This is
a backward procedure in which we first identify in DP
tables the final point ~xf for n ¼ N , and, next, in these
tables, we read off data of optimal controls hN ð~xfÞ and
uN ð~xfÞ. In the tables we also find transformed outlet states
~xTN � ~x� ~fN ð~x; uN ; hN ÞhN , which are inlet states to the
stage N.

Now we pass to the N � 1 stage subprocess. It has its
own outlet state ~xN�1 which was already found as ~xTN .
By interpolating in the tables for n ¼ N � 1 we find all
suitable data for the state ~x ¼ ~xN�1. We thus find opti-
mal profit V N�1ð~xN�1Þ, optimal controls hN�1ð~xN�1Þ;
uN�1ð~xN�1Þ, and inlet states to the stage N � 1; ~xN�2 ¼
~xTN�1. Continuing the procedure by the computer, we
obtain an optimal solution as a sequence of optimal con-
trols uN; uN�1; . . . ; u1 and hN ; hN�1; . . . ; h1, and an optimal
discrete trajectory, ~xN ; ~xN�1; . . . ; ~x1; ~x0. Sequence of opti-
mal costs for all related subprocesses V N ; V N�1; . . . ; V 1 also
follows. A virtue of the DP method is that it always leads
to absolute maximum.

However, in problems with large number of state coor-
dinates a very serious difficulty arises connected with the
use of the dynamic programming. This is the so-called
‘curse of dimensionality’, referred to the large dimensional-
ity of state vector, ~x. Indeed, for s ¼ dim ¼ 1, a single
column of discrete set of ~x is sufficient, for s ¼ 2 the
computational grid must constitute, say, a rectangle. For
s ¼ 3, however, the grid must be cubic, for s ¼ 4 the data
must be obtained (and stored) as a set of cubes, etc.
Clearly, the number of computational points, and hence
the computer memory requirements increase tremendously
with state dimensionality s. Problems with s ¼ 1 and s ¼ 2
are quite easy to solve numerically, problems with higher
s ¼ 3 are troublesome or serious, and problems with
s P 5 are practically intractable if good accuracy is
required. Therefore the numerical dynamic programming
can effectively be applied only for problems characterized
by the small dimensionality of the state vector ~x; problems
of large dimensionality, such as those encountered in the
static optimization, are excluded. Fortunately, many
dynamical problems of energy yield are of low dimension-
ality. In the case of high s, other methods, e.g. those apply-
ing maximum principles must be applied. They are based
on canonical equations, adjoints and a Hamiltonian of
these variables, and are described in a number of sources
(e.g. [21–25]).
14. Dimensionality reduction in dynamic programming

algorithms

Sometimes the dimensionality reduction is possible in
DP problems. For the energy problems considered dimen-
sionality reduction is possible in autonomous systems due
to the constancy of the time adjoint k along an optimal
path. This is described below.

For Vn regarded as energy production profit, net eco-
nomic-like profit, or the difference between V n and the
‘‘time penalty cost” kðtn � t0Þ, is defined. k is Lagrange
multiplier associated with time t. When a discrete process
is autonomous and time interval hn is not explicitly present
in rates fk, k is identical with a constant Hamiltonian
Hn�1 ¼ H . Under a weaker assumption of an autonomous
process and intervals hn explicit in rates fk, the constancy
property refers only to k. The quantity k describes the
decrease of the original profit when the process duration
is increased by one unit.

Applying k we deal with modified optimal functions,
net profits V n

� � V n � kðtn � t0Þ or net costs Rn
� � Rnþ

kðtn � t0Þ, both criteria being equivalent because the second
is obtained by the multiplication of the first by the minus
unity. Local profits and costs are defined in a similar
way. For single-stage profit eDn, which appears in Eq.
(104), a net profit is eDn

� � eDn � khn, where hn � Dtn. Simi-
larly total cost at stage nis eK n

� � eK n þ khn, whereeK n � �eDn.
Given net profit eDN

� , optimal process is governed by a
sequence of asterisk functions: V 1

�; . . . ; V n
�; . . . ; V N�1

� and



Fig. 5. Influence of internal irreversibilities U on limiting finite-rate work
generated in engines and consumed in heat pumps ðT 0 ¼ T eÞ. Example for
continuous heat-pump system with U ¼ 0:5 and engine system with
U ¼ 1:5.
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V N
� . The sequence of these optimal functions obeys an

equation

V n
�ðxn; kÞ ¼ max

un;hn
feDn

�ðxn; un; hn; kÞ

þ V n�1
� ðxn � fnðxn; un; hnÞhn; kÞg: ð112Þ

This differs from Eq. (104) by the presence of vector x

rather than ~x � ðx; tÞ. Because of the constancy of k along
an optimal path, state dimensionality of the problem de-
scribed by Eq. (112) is decreased by 1 in comparison with
that for Eq. (104).

The continuous limit of Eq. (112) is a HJB equation

max
u

~f 0�ðx; u; kÞ �
oV �ðx; kÞ

ox
f ðx; u; kÞ

� �
¼ 0: ð113Þ

It is similar to the Hamilton–Jacobi equation of classical
mechanics but contains the maximum sign before a Hamil-
tonian expression. Eq. (113) refers to an optimal duration
T ¼ ðtf � tiÞ equal to oV �ðx; kÞ=ok.

Optimal functions of work production, Vn and V n
�, pre-

serve a number of basic qualitative properties of economic
production profits and total economic profits. The same
remark refers to functions of work consumption, Rn ¼
�V n and Rn

� ¼ �V n
� . For multistage control processes,

optimal data generated by DP have the form of sequence
functions V nðx; tÞ or their duals V n

�ðx; kÞ, where x is process
state, t is a time variable and n is the number of stages.
Optimal profit functions V nðx; tÞ and V n

�ðx; kÞ, or cost func-
tions Rnðx; tÞ and Rn

�ðx; kÞ, are linked by the Legendre
transformation [26–28], see the analytical example in
Section 12. The limiting case of a continuous process is
characterized by functions V ðx; tÞ and V n

�ðx; kÞ, which are
mathematical equivalents of Hamilton’s principal action
and abbreviated action in classical mechanics or related
phase functions in optics [26]. The relation between the
optimal cost functions generated by dynamic programming
and Pontryagin’s maximum principle is now well under-
stood [27,28]. The optimal paths of a control problem are
equivalent to mechanical paths in mechanics or light rays
in optics. The use of dynamic programming in constructing
finite-time potentials for discrete and continuous control
separation processes has been summarized [18]. Computa-
tional examples showing wave-path duality are available
for a separation process in which a volatile component is
evaporated from a porous, fluidizing solid [18,29].

15. Concluding remarks

In this research we considered energy limits in dynami-
cal energy systems driven by nonlinear fluids that are
restricted in their amount or flow, and, as such, play role
of resources. We discussed main aspects of analytical
HJB theory for continuous systems and various examples
of HJB equations in nonlinear power generation systems.
Applications of HJB theory, subject to appropriate bound-
ary conditions (the process or its inversion end at the equi-
librium with the environment), lead to various finite-rate
generalizations of the standard availability (exergy). Pro-
cesses associated with generalized availabilities are charac-
terized by presence of imperfect phenomena as, e.g., heat
conduction or non-ideal compression and expansion. In
modes departing from the equilibrium the generalized
exergy is larger than in their inversions approaching the
equilibrium. Bounds for mechanical energy yield or con-
sumption, provided by generalized exergies, are stronger
than those defined by the classical exergy (enhanced
bounds).

Analytical solutions are obtained for systems with linear
kinetics, and their extensions are discussed for those with
nonlinear kinetics and internal dissipation. For radiation
fluids analytical difficulties appear, associated with the
use of Stefan–Boltzmann equation in its exact form. These
difficulties are avoided in the pseudo-Newtonian models
[with state dependent exchange coefficients a(T3)] and by
use of numerical DP algorithms. Specific results show com-
plex, non-exponential form of the radiation relaxation dur-
ing the power production process.

We have also considered numerical approaches to power
generation problems, which apply the dynamic program-
ming method. Convergence of computational DP algo-
rithms to solutions of corresponding HJB equations was
shown. Lagrangian multipliers associated with duration
constraint were used to reduce dimensionality of some
power production problems. Legendre transform has been
applied to recover original work functions.

Other important application of the considered approach
involves separation systems, chemical energy systems, and,
especially, fuel cells. Fig. 5 depicts work limits for real and
reversible heat pumps, separators and energy generators.
Systems with work consumption are described by function
R(T ,s), systems with work production – by function
V ðT ; sÞ. lbws is a line of lower bound for work supply,
ubwp – a line of upper bound for work production. ‘‘Endo-
reversible limits” correspond with curves for U ¼ 1; weaker
reversible limits are represented by the straight line
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Rrev ¼ V rev. Dashed lines mark regions of possible improve-
ments when imperfect thermal machines are replaced by
those with better performance coefficients, terminating at
endoreversible limits with Carnot energy generators.

For a fixed change of system state reversible upper
bound Vrev achieved in production modes equals to revers-
ible lower bound Rrev achieved in consumption modes. For
irreversible bounds the equality does not hold, and a lower
bound of R is larger than upper bound of V. Note a simi-
larity of this plot to charts characterizing generalized exer-
gies [4]. This similarity is a suitable starting point to
investigate energy generation in electrochemical systems.
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